Monthly Archive for May, 2014

[2300AD] The GDW 2300AD Worldbuilding system: Part 3 – Final version!

2300AD Celestia output!

2300AD Celestia output!

I’ve been tinkering around a little bit more with my 2300AD worldgen script – I was actually adding the capability to generate Celestia versions of the systems that the program creates (as you can see from the screenshot above, I was successful!), but while I was at it I figured I’d make a few tweaks to some parts of the the system that I wasn’t too happy with. I think the results are much better now.

World Density: First I added a new rocky core density category so that worlds between 4000 and 7000km radius had densities between 0.75 and 1.00 Earths – previously they could go down to 0.5 Earths and I was ending up with habitable planets with unrealistically low densities for their size as a result. Worlds smaller than 4000km radius still have densities between 0.5 and 1.00 Earths, and worlds over 7000km radius have densities between 0.8 and 1.3 Earths as before.

Icy Core size: I wasn’t happy with the Icy Core size either – I was getting a lot of Titanian and Iceball worlds with the first realistic system and that didn’t make much sense to me – in the outer zone it should be easier to accrete material and you’d be much more likely to end up with gas giants instead of Titan and Pluto-like bodies. “Iceballs” don’t really make much sense to have as planets either – they’re really just the equivalent of Dwarf Planets, which would be found in a Kuiper Belt (which is usually assumed to be present but not mentioned). So now Icy Core radii range linearly from 3d6 to 8d6 times 500km, instead of starting at 1d6 – this means we end up with larger icy bodies, and a greater chance of gas giants (though there are still a small number of iceballs created, mostly below 3000km radius).

Snowballing: One limit from the original system was that ‘snowballing’ into a gas giant couldn’t happen within the Inner Zone if the MMW was greater than 2. This seemed a bit arbitrary to me, so I removed that limitation to allow it to occur at any planet where the MMW is greather than 2. As it turned out, changing it didn’t actually seem to make any significant difference to the output! Presumably this is because it’s very hard to get an inner zone planet that would be massive enough to have an MMW over 2 in those conditions.

Gas Giants: I’ve now subdivided Gas Giants into new World Types based on their sizes. Failed Cores are still under 12000 km radius. Small Gas Giants are between 12000 and 40000 km radius (this includes Uranus and Neptune). Gas Giants are larger Jovians that are larger than 40000 km radius but less than 2 Jupiter Masses (2 MJ) – this includes Jupiter and Saturn. Superjovians are over 40000 km radius but have masses between 2 and 13 MJ. Finally Brown Dwarfs are jovians that have masses over 13 MJ. This adds a bit of variety to the systems generated (and lets me use different textures in the Celestia output!)

I also changed how these gas giants are created. I still stick with the ‘snowballing’ idea, but something that always bugged me about that was the fact that the the original core density is assumed to be the density of the resulting gas giant, which can’t be right since all that extra hydrogen and helium has a much lower density than the icy/rocky core and would reduce the density of the resulting jovian. Now, if a planet snowballs into a Gas Giant then its density is re-rolled on a new density table depending on its final radius – this allows Superjovians to be 2-12 Jupiter masses, and Brown Dwarfs to be between 15 and 65 Jupiter Masses. It’s not the prettiest system since values are rolled and then rerolled, but it seems to get the right kind of results.

Garden Worlds: I realised that the lowest mass F V star has a total main sequence lifespan of 4 billion years, which means that garden worlds aren’t really likely around them. So while Pre-Garden, Post-Garden, or Frozen worlds are an option in their habitable zones, Garden worlds and Glaciers (which are just Garden worlds in a temporary ice age) are now no longer possible there.
Continue reading ‘[2300AD] The GDW 2300AD Worldbuilding system: Part 3 – Final version!’